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Asymptotic scaling of the gluon propagator on the lattice
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We pursue the study of the high energy behavior of the gluon propagator on the lattice in the Landau gauge
in the flavorless casen¢=0). It was shown in a preceding paper that the gluon propagator did not reach
three-loop asymptotic scaling at an energy scale as high as 5 GeV. Our present high statistics analysis includes
also a simulation a3=6.8 (a=0.03 fm), which allows us to reach=10 GeV. Special care has been
devoted to the finite lattice-spacing artifacts as well as to the finite-volume effects, the latter being acute at
B=6.8 where the volume is bounded by technical limits. Our main conclusion is strong evidence that the gluon
propagator has reached three-loop asymptotic scaling, @nging from 5.6—9.5 GeV. We buttress up this
conclusion on several demanding criteria of asymptoticity, including scheme independence. Our fit in the 5.6
GeV to 9.5 GeV window yields\ M5=319+14" 30 MeV, in good agreement with our previous restt's
=295+20 MeV, obtained from the three-gluon vertex, but it is significantly above the 8iclyer functional
method estimate: 23819 MeV. The latter difference is not understood. Confirming our previous paper, we
show that a fourth loop is necessary to fit the whole (2.8-9.5) GeV energy window.

PACS numbds): 12.38.Gc, 11.15.Ha

I. INTRODUCTION large enough. The reason is that at large scales, the coupling
constant has a very mild logarithmic dependence. If the win-
In previous works, we tackled the nonperturbative calcu-dow is too narrow, the higher order terms might mimic the
lation of the QCD running coupling constant in two different lower order ones, which we consider, and thus introduce a
ways: (i) by using the three-gluon couplifd,2] and(ii) by  bias in Agcp. A very wide energy window has been ex-
matching the behavior of the lattice regularized gluon propaplored in Ref[4] by using Schrdinger functional technique.
gator to the one predicted by perturbation thef8). The  When using the methods based on Green functitrg), it
latter method was expected to benefit from the very goods more difficult to vary the energy scales by several orders
statistical accuracy of the propagators and thus yield a rathgjf magnitude. Moreover, one deals with more scales: the
precise estimate of the strong coupling constant in its ultrasattice spacinga, the linear lattice extensiob, and the mo-
violet (UV) regime, i.e., ofAqcp. Unluckily we could not  menta of the gluong?. On the other hand, compared to the
satisfy this program for the unexpected reason thawgluon  gcprginger functional method, we believe that the Green
propagator has not yet reached the asymptotic scaling afnctions have a simpler physical meaning and, being con-
scales Of.2'5_5'0 GeV. This .conclu5|on was supported byceptually very different, represent a necessary test.
several different tests. In particular, the remainder of a strong The requirement of larger momentum scales implies

scheme dependence when using one-, two- and three'lo%maller lattice spacings if we are to keep the G¢a?p?)
formulas indicated the compelling need of higher orders in_ . .
the perturbative expansion. Still we observed that the inclugrt'faCtS u_nder _control dp=<1). Eguwalently, we need (o
sion of third-loop corrections improved the asymptoticy per_form_5|mulat|ons at large#, which (for reasonable com-
beit not enoughover the two-loop results. We were natu- PUting time also means smaller volumes and potentially
rally tempted to extend the analysis to higher energy scaledangerous infraredIR) finite-volume artifacts. To prevent
where any perturbative expansion, with a fixed number ofn€se problems, we need to ensuge>1.

terms, should progressively improve. This is the basic moti- 1he question is whether we can find an ensemble of lat-
vation of the present paper. tice result satisfying all requirements, i.e., that the lattice

Since we want to reach ever larger momenta on the lat@rtifacts are small enougrO(L_*)<p<O(a*)] and that
tice, we have to assure that the dominant lattice artifacts arlé1€ €nergy window is large. This is a very demanding re-
under control. We must also ensure that the energy windowfuirement because a small change in the coupling constant
in which we could test scaling of the gluon propagator, is

1By a lattice resulf we mean a value of the bare propagator for
*Email address: Philippe.Boucaud@th.u-psud.fr one value ofp? obtained on a lattice with a gives, and in a

TEmail address: roiesnel@cpht.polytechnique.fr specific volume.
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can induce a large uncertainty ingcp. To avoid the statis-  rather complete list of references, see Ré#]), while, to

tical uncertainties in that respect, we work with 1.000 inde-our knowledge, the large momentum gluon propagator has
pendent gauge field configurations at every stage of thigot been studied in detail, except for a preliminary approach
researci.To keep the energy window large enough, we needn [9]. Preliminary results of this paper were presented too in
to fit simultaneously the lattice data obtained at differentRef. [15].

lattice spacings. In other words, we must ensure that the The remainder of this paper is organized as follows: In
small momentum lattice data with largeand large momen- Sec. Il we outline the generalities of the method we use
tum data with smallbut reasonable are compatible. In (previously described in Ref3]), and introduce the main
order to achieve that and to reduce systematic uncertaintig¢erturbation theory tools. In Sec. IlI, the lattice artifacts are
to the level of statistical ones, one evidently needs to controfliscussed. Those related to hypercubic geometry are elimi-
both IR and UV lattice artifacts for all the data. Therefore, anated by improving the method presented in RR&f. A pro-
major part of this paper is devoted to these issues: the redu€edure allowing us to treat empirically the finite-volume ef-
tion of the UV and IR systematic uncertainties. The discreti-fects is described. In Sec. IV we perform a three-loop fit to
zation errors are monitored by working at three values of théhe gluon propagator in the modified momentum space sub-

bare lattice coupling: traction MOM) scheme and apply the test of scheme inde-
pendence, by considering(8.6—9.5 GeV window in which
B=1{6.0, 6.2, 6.8. (1) only the data a3=6.8 are used. Section V is devoted to the

study of the whole window, ranging from 2.8 up to 9.5 GeV

A lattice spacinga™"=2.72(11) GeV has recently been p combining all lattice data. We discuss our results in Sec.
measured a=6.2 with a nonperturbatively improved ac- \;; 3nd conclude in Sec. VII.

tion [5]. For a direct comparison wifi—3], in this paper we
will keepa™}(B8=6.2)=2.75 GeV which is well within the
error bars. Other lattices are calibrated relatively to this one, Il. GENERAL DESCRIPTION OF THE METHOD

by using the lattice measurement of the string tens@jn The Euclidean two-point Green function in momentum
We take space writes in the Landau gauge:

a 1={1.97 Gev, 2.75 GeV, 6.10 GgVy (2

-1_

PPy
2

G®(p?), (5)

at 8=6.0, 6.2, and 6.8, respectively. Thus, our lattice spac- Gfl)ﬂzlaz(p,—p)ztsalaz( Opgpy™
ings vary from 0.03 fm to 0.10 fm. The study &
=6.8 (@=0.03 fm) allows us to reach momenta up to
~10 GeV. The main study of the finite-volume effects is
performed at3=6.0, by repeating the calculation with the
following lattice volumes:

v={12", 16", 24 324. 3 i dInZy(u,A) _ i dIn[ w2GE( u,A)]
A—oo d |I’] MZ A—o d |n ILLZ

wherea,a, are the color indices ranging from 1 to 8. The
bare gluon propagator in the Landau ga(sge, for instance,
Ref.[3]) is such that

(6)
From this study we deduced an efficient parametrization of
the finite volume effect$18), which allows us to extrapolate

our high momentum data to thé— limit. An important is independent of any regularization schezig(.u,A) is the

cross-check is provided by two volumes/t 6.8: gluon renormalization constant in the MONbr MOM)
scheme at the poimi®= 2, andA is a generic notation for
v={16', 24", (4)  the UV cutoff[a! or (d—4)71].
It is well known that thex and the A dependences of
while for =6.2, we work with the volum&/=24" only. Zs(w,A) factorize when one drops all the terms vanishing as

An improved version of the method used in REB] to A —« (see Ref[16]), and we can write:
cure lattice hypercubic effects has been applied. Nonhyper-
cubic finite spacing effects have been dealt with by compar- Za( A)=ZR() Z3(A) + O(LIA), (7)
ing different values of3.

Curing_the ab_ove-menti.oned artifacts, we .COU|d kge_p MOy here the evolution of botlZ?(,u) and Zg(A) is described
ggrc;zitliaot::ge points. We discarded those which exhibit Iargeby the Callan-Symanzik equations

In this paper, we will not deal with the small momentum (

behavior of the gluon propagator. We postpone it to our
forthcoming publications. This part has so far attracted a lot
of attention in the literatur¢7—-13 (for a review with a

din 22 —FR(M))ZE(MFO,

by A _
(W—Fb(A))ZB(A)—O. (8

2The only exception is the simulation at (6.0,*B2where we
have 100 configurations. From QCD perturbation theory we know that
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din de(,u) Z_3(,u,1/a) thro_ugh Eq.(7). When \l/)ve resf[ric_:t our computa-
5 =TR(w) tion to the lattice data §8=6.8, Z3(1/a) is just an overall
dinu irrelevant multiplicative constant. With our three values of
B, two ratios of three(Z5(6.8)/25(6.2), 25(6.8)/25(6.0),
_ ﬁmL Y1 o2 22(6.2)/22(6.0)) are necessary for appropriate matching of
4 (417)? all our lattice data. These ratios will be fitted and compared

to one-loop predictions in Sec. V.

y Finally, knowledge ofa(ug) in a given scheme allows
+ 2 3+ o(a“)), (9)  the determination ofAqcp in this scheme and, hence, of
77)3 AMS
QCD
where it is understood that the coupling constant in a given
scheme is a function g& such that IIl. LATTICE ARTIFACTS
da Bo B B . We refer to Ref[1] for technical details concerning the
=Bla)=—5—a"— a’+0(a”), lattice setup in our simulations, the calculation of the Green

i
2 3
(2m) (4m) functions, their Fourier transform, the checks of g ,
192

color dependence of the propagators, and the set of momenta
with considered for the different lattices studied. Since the release
of Ref. [1], we increased the statistical quality of our data,
and further explored various lattice volumes and various val-
Bo=11, B1=51, v=7. 1D yes of 3. As mentioned in the Introduction, of special inter-
est for this study are the results of our simulation performed
in the flavorless casen(=0), while y;, y,, and 8, are  at 8=6.8 at two volumes 6and 24. The high statistical

scheme dependent. To be specific, in the flavor&M, accuracy of our data made a detailed study of systematic
schemé, uncertainties possible and mandatory.

(10

B,=4824, 71:%), y,=960. (12) A. Hypercubic artifacts and other (a%p?) effects
We start with the discretization errors. In a finite hyper-

Lattice calculations provide us with the bare propagator bufubic volume the momenta are the discrete sets of vectors
in a finite volume which, besides the UV cutofA(-1/a), o
introduces an additional length dimensian(the physical p,=——n,, (14)
volume beingL*). As we shall see, finite-volume effects, as L
well as hypercubic artifacts, should be eliminated first in
order to have access to the renormalization constant in Egyhere the components of, are integers andl is the lattice
(6), Z3(u,1/a). size. The propagators have been averaged as usual over the

Equations formally analogous to ES) and(10) can be  hypercubic isometry groupl,,. The momenta corresponding
obtained from the second line of E(), with the substitu-  to different orbits ofH,, but belonging to the same orbit of
tions of 1& for A and of the lattice bare coupling constant the continuumisometry group S@) [e.g., n,=(2,0,0,0),
a’=3/(2wp) for the renormalized one. Unhappily the andn,=(1,1,1,1)], have been analyzed according to an im-
anomalous dimension coefficien{§, v have not been de- proved version of the method proposed in H&i.
termined to our knowledge, presumably due to the difficulty Let us briefly recall the elements of that method. The
of the task. Any perturbative calculation ZE(l/a) appears main idea is based on the fact that, on the lattice, an invariant

thus to be limited to one loop: scalar form factor, such a®(p?), is indeed a function of
four invariantsp"'=3 p , n=2,4,6,8. We will neglect the
d |”Zl3)(1/a) B 7’3 1 invariants with degree higher than 4 since, in any case, they
daP(1/a) ~ By aP(1/a)’ (139 vanish at least as a*. Thus, we parametrize and expand the
lattice two-point scalar form factor as a function of the two
for which it can easily be proved that=— y,. remaining invariants which, on dimensional grounds, appear

Our generaktrategy as explained in Ref3], will be to  asp? anda®pl“®:
integrate simultaneously Eq&),(10) up to three loops in a
given scheme. The solutions depend on the initial values G,(Zt)(pz,azp[“];L,a)=G|(2t)(p2,O;L,a)
Z?(,uo) and a(uo). They are related to the lattice results @ @
dG

— aZplt.
d(a?p!*l)

. . . . 2p[4] =
3Details of the computation of the parametgs, y,, v, in this a%pl4l=0

scheme can be found in Ref&,17). (15
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' ! ' ' TABLE I. The values of the parametebs c, d, as obtained by
01F . fitting our data to Eq(16).

Lattice 24' B b c d

6.0 0.1179) 1.1(1.5 0.158)
6.2 0.1092) 1.91.2 0.183)
6.8 0.1005) 0.6(8) 0.135)

0.05 -

=0

-0.05

(363(ap) )| 0

op=60 form b/p*, whereb is a constant. At this point, from the
o1 | fﬁfé‘ﬁ study of the lattice hypercubic slope for different values of
— B, we extracted the values of terbip* and examined the
behavior of the remainder. We find that the logarithm of
: ; : : —b+p*9G/(a?dp!™)| 2pa1-¢ is well described by a linear
p function of Lp. This leads us to

2

p

(@)

b
T ] — =—[1l+cexp—dLp)]. 16
Lattice 24* a(a2pll) oo al o p)] (16)

p=6.8

. By fitting our data to the above form and by keeping
X?/Npe=1 (see Fig. 13 we obtained the set of parameters
given in Table I.
The values forc andd in Table | are presented to show
. the order of magnitude. Their errors, estimated by using the
jackknife method, are misleading since the parameters are
strongly correlated. A refined statistical study is not neces-
sary for our purpose, since we follow the jackknife analysis
cluster by cluster to the end.
On the other hand, it is rewarding that the errordim
Eq. (1) are small, which is essential for an accurate infinite-
FIG. 1. Plot(a) showsp?(9G/a2ap!¥l)| zpi1_, as a function of V(_)Iume Iimi_t. It _is a_l;o encouraging _thbtve_lries only slowly
the scalep evaluated on Hlattices at3=6.0, 6.2 6.8. Plogb) ~ With & which justifies our neglecting higher order terms,
compares the “hypercubic-free propagator” defined from Eqs.O(a*p!), etc., and it clearly confirms that we do control the
(15),(16) (black circles and the propagator computed by direct ex- lattice hypercubic artifacts. We can now take advantage of
trapolation toa2p!*l=0 (white circles, plotted as a function of the the good fit obtained with E¢(16) and compute théattice
momentum. hypercubic slopén cases where only one orbit exidt®r
instance, whem?=5, we only haven,=(2,1,0,0) and its
H, orbit].

. . . . To summarize, by using Eq(16), we extrapolate
aG/a(azp.[“])lazpm]:q is a symbolic notation for théattice G2(p2,a2pl )L, a) toywhat \?ve v(\?il(l c)all thehyperfubic-
hypercubic slopeThis equation summarizes our method to freae 22 A )

. . . : propagator Cgt(p ,0;L,a). In Ref. [3], we discussed
reduce hypercubic artifacts and contains all the assumptions ", : (20 (4]
provement brought in by our previoua“p 0)

on which the method relies. We make the hypothesis that th8xtrapolation approach with respect to other methods to re-

lattice propagator for the discrete momenta belonging to d'f'duce hypercubic artifacts. The use of Efi6) allows even

ferentH, orbits takes values according to a certain continu-, i g
. . . . better accuracy on slopes: not only does it allow an extrapo-
ous functional behavior. When several orbits exist for on

- 2,41 = it exi i
p?, to the extent that a linear approximation is licit, thy- flation to a P 0 when only one orbit exists but it also

percubic slopecan be extracted and the extrapolation tohelps to reduce the uncertainty by taking benefit of the

2[4] — : neighboring values ofi> when the error is locally too large.
ap 0, by using Eq{15), can be made. We have checked The outcome of this improvement is depicted in Fig. 1b,

that the linear approximatiofil5) is indeed good enough. : S . .
This is what haspgeen donemin)RéB]. Now 3ve elabora%e where the resulting curve joining the points obtained by us-

further on this method in order to improve its accuracy and____

extend its applicability.
A simple dimensional argument leads to “For example, the hypercubic correction for the free propagator,

9G/(a%dpl™)| z2pre1 - o LIp*, asL— o, suggesting the fitting  1/p2=1/(p?— $za2p!*))+ - - -, would be 1/1p*.

1.30 .
6.5

(b)
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FIG. 2. Plot(a) contains the hypercubic-free propagators evaluated 8r{tlack squares 16* (black circles, 24" (white circles, 32*
(white squareslattices at3=6.0. The same data extrapolated.te- according to the parametrization given by E(s8),(19) are plotted
in (b).
ing Eq. (16) is much smootherz than the one obtained byp2G(2)(p?,0;L,a). We tried severaAnsaze for this param-
separate extrapolatidrior eachn?. _ ~ etrization function and finally found that

It is important to add that not atD(a?) artifacts are elimi-
nated: for instance, the lattice artifacts?p?, which do not 4
break S@4) invariance, are still present. One way to deal G@(p2.0:L a)=G2(p20: a)

. : ; ' i OL,a)=G J0;2,a)| 1+vq| —
with this problem is to compare the data at different values at (P )=Gia(p ) Y1l
of B. One can also study the stability of the results when the
. 2 - . . .
maximum \_/alue qf_p _used in the fits is varied. We have +vzexp(—v3Lp)}, (18)
checked this stability in the fits presented below.

B. Finite-volume effects with

After removing hypercubic artifacts, we are left with the
hypercubic-free propagator. The dependence on the length  ,,=45040), v,=0.4416), v3=0.17125), (19
scaleL, as we previously mentioned, is apparent from Fig. 2.
The elimination of this additional length scale should be

done in order to compute the renormalization constant for th€ives the best fit to the behavior dn of hypercubic-free
Landau gauge gluon propagator: propagators evaluated on“216*, 24*, 32* lattices in the
energy window (1.5-3.0) GeV ajB=6.0. This parametri-
Z3(p,1l/a)= lim [pZG,(azt)(pZ,O;L,a)]pz=Mz. (170  zation is not efficient at lower energies, as can be seen in Fig.
L—ee 2b.
Once the parametrization function from propagators
In doing so, we will not attempt a theoretical understandingevaluated aj3=6.0 is established, it can be applied to our
of the expected finite-volume dependence of the bare propaesults at 16and 24 lattices at3=6.8. The agreement after
gator. We will be content if we obtain a reliable empirical extrapolation shown by the curves resulting from the ex-
parametrization for the dependence on the lattice volume afapolation in Fig. 3 is a crucial test for the validity of such a
G,(gt)(pz,O;L,a) which will allow us to take the required limit parametrization for finite-volume effects.
(17). For dimensional reasons, we will take it as a function of Thus, Eqs(17)-(19) lead to a nonperturbative evaluation
Lp anda/L. We note that the difference among the data atf the renormalization constar#s(u,1/a), which is pre-
fixed B and various volumes gets bigger as we move towardsisely the quantity we want to compare to the predictions of

lower p2. This is illustrated in Fig. 2 where we plot perturbative QCD.

®Note, however, that even in the latter case, the resulting curve is °In this procedure we assume that the volumé i82already infi-
by far smoother than the one obtained by simply averaging thadite; i.e., we takeG(2(p?,0;32a(6.0))=G{>(p?,0;%,a(6.0)). In
orbits or by selecting the “democratic” points, as advocated in Ref.the fit to the form(18), the energy window is chosen such that the
[9]. This improvement was already illustrated in Re]. total y%/Npg~2.
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FIG. 3. This figure is analogous to Fig. 2 f@r=6.8. Black(white) circles correspond to 24(16%) lattices.

IV. FITTING IN THE MOM SCHEME AT HIGH ENERGIES

In this section we perform the matching of the perturba-

tive predictions for theMOM renormalization constant to
our lattice result at high energies. We follow the metho

outlined in Sec. Il and refer the reader to Ref] for more

details.

We consider the coupled differential equatid@i(10) in
the MOM scheme, where the coefficients, y,, B, are
those given in Eq.(12). We fit our data at3=6.8 for

Z3(w,1/a), with a solution of these coupled equations in the

energy window (5.6-9.5) GeV. The result of this fit is

Z4(9.5 GeVj=1.31079),

3

15 | }\ B=6'8
3

V — oo

fitting window

5 6 7 8
n[GeV]

FIG. 4. The plot showssolid line) the best fit taZ3(u«,1/a) with
the three-loop formula together with the lattice resultsBat6.8

avon(9.5 GeV)=0.1903), x2/Npe=0.29. (20)

The x?/Npg is significantly smaller than 1 which may be a

dsign of some correlation between the points at different val-

ues of the energy..

As explained i3], AM® can be estimated from the above
guantities(20) by using the perturbative expressions to two-
and three-loop accuracy. We obtain

A?A:SIoop): 0.346 Am)p): 319+ 14 MeV,

AN oy=0.346  AMOM =375 MevV, (21)

where the error is only statistical at this stage. The existence
of a good fit(see Fig. 4 by itself is not a sufficient proof of
asymptoticity: next-to-three-loop corrections could be mim-
icked by a simple rescaling of5cp in the considered energy
range[3]. This is why we developed a consistent method to
test asymptoticity by exploring the scheme dependence
within the domain of so-callegood schemesne investi-
gates the dispersion of the result {&M° when we vary the
schemes, by varying, andvy,, in all the possible ways such
that the successive terms in the perturbative se@ig§10)
are at most as large as the preceding SriesRefiS], we
found that this dispersion is of35 MeV for AMS fixed
from the fit of the gluon propagator at4 GeV to the three-
loop perturbative expression. In the present study, when fix-
ing AMS at around 9.5 GeV, this dispersidin the same
domain of schemess of ~10 MeV only.

Note that the difference in E§21) between two and three
loops, although smaller than at 4 GeV, is still sizable, indi-
cating the necessity to include the third loop term.

after extrapolation td.— from both 16 and 24 lattice volumes
for 5.6 Ge\< u<9.5 GeV. The fit is continued outside the energy 'This is the generalization of the effective charge approach pro-
window as a dashed line. posed in Ref[16].
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V. GLOBAL DESCRIPTION AND ASYMPTOTIC ' ' '

PATTERN Lattice data at

2.15 4
Our analysis at high energy in the previous section seem:s B=60 and p=62
to establish that a signal of three-loop perturbative scaling is
found in the energy window (5.6-9.5) GeV. By including
the data obtained g8=6.0 and8=6.2, one can make the
energy window larger: 2.8 Ge¥u<9.5 GeV (the choice
for the lower limit will be discussed belowHowever, as
already mentioned in the end of Sec. Il, any global fit in- :
volves two additional parameters, the raﬁ&G.O)/Zg(G.S) 165 | 1-loop Y _
and Z5(6.2)/25(6.8). Moreover, we do not expect a three- 2-loops T
loop perturbative behavior to work in the whole energy win- 8doops /T ]
dow. In Ref.[3], we showed that the propagator was not 4-loops
asymptotic to three loops at4 GeV. The difference be- 14 . . ‘ .
tweenA (3 o0p in Ed. (21) and~350 MeV as found in Ref. 23 28 33 38 43
[3], confirms that statement. Thus, at least the fourth loop (a)  [GeV]
correction is necessary for the global fit. Unfortunately, such
a perturbative result is not available in th®OM scheme. 145 '

With these five free parameters, a global fit turns out to be
unstable. A global study of our lattice data would neverthe-
less enable a direct test of consistency for the whole infor- N p=68
mation we extract from gluon propagator. For that reason we
adopt the following strategy. First, we take the value of & 14 1
A{5loop) 9iven in Eq.(21) to be the asymptotic one, i.e., we
assume the gluon propagator to reach asymptoticity at thre:
loops for the energy window studied in the previous section.
Then we fix the fourth loop correction to the three-loop per-
turbative expression by fitting the data obtained in our simu-
lations at3=6.0 andB=6.2, corresponding to the energy
range (2.8—4.3) GeV. Once the fourth loop correction is
known, we will verify the asymptoticity of the gluon propa-
gator in the entire energy window (2.8-9.5) GeV. 13

The four-loop information about the gluon propagator in “65 7 7.5 8 85 9

MOM scheme is encoded in the coefficiery§°™ and (b) k[GeV]

BY°M . These two coefficients are not independent but re-
lated through the expressi¢h7,3]

(1/a)

191

Zw,1/a)z"

Lattice data at

*(1/a

Z(w,1/a)Z

135 -

FIG. 5. One-, two-, three-, and four-loop perturbative curves
obtained from our best fits ofyoy(9.5 GeV) andy, are pre-

MOM MOM sented in plot(a). Notice that all these curves are computed with
Y3 3 Yo V3 B3 Yo MOM _ - -
A —, (22 A =319+ 14 MeV. The points correspond to the lattice evalu-
(4m?* (4m)* Bo  (4m* (4m)* Bo ations at3=6.0, 6.2 divided by our best fits of the ratios B§

o ) o ) ] referred to3=6.8 (Z3 is taken to be 1 aB8=6.8). Plot(b) shows
which is valid for any renormalization scheme in whigh  the same perturbative curves and the lattice daja=a6.8.

=yMOM =M and B,=B¥M, listed in Eq. (12).

Thu_s, there is only one free parameter to be fitted_. Fpr sim- Zg(a(G.O)) Zg(a(6.2))
plicity, we choose among the set of schemes satisfying Eq. ——-.=09953), ———=1.0132),
(22) the one withB3=0, y; being that free parameter. For Z3(a(6.8) Z3(a(6.9)
such a renormalization scheme,
A ¥3=(2.2+1.6)x10* (x*Npe=1.17), (24)

sz:z“’(mexp( %[&’%m— agl| (23

where the errors on the ratios @f’s do not take into ac-
count the uncertainty coming from the errors in the lattice
is, up to higher irrelevant orders, the solution to the four-loopspacing ratios. This uncertainty does not exceed 1%. When
coupled equations analogous to E@8) and (10), where the lower limit of the energy window takes values below
Z®)(u) is the solution of the three-loop problem, with, 2.8 GeV, they?/Npe rapidly increases, which indicates the
being the initial strong coupling constant at for both, end of the four-loop matching. This is illustrated in Fig. 6a.
three and four loops. The results of the fit in the energyThe upper limit is fixed byap</2. We note also that the
window (2.8—4.3) GeV rea(see Fig. 5 fitted values of the ratio$24) are very close to 1.0, and

3(4m)3
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2 = ' ' atu=4.0 GeV. The large error foy; quoted in Eq(24) is
not surprising because the determinatiomgfstrongly de-
pends onayom(9.5 GeV). In other words, a very small un-
certainty inaygy is reflected in the large error fors in our
energy window (2.8—4.3) GeV. Thus the computation of

the value for}g from perturbation theory would considerably
reduce the systematic uncertainty @fion(9.5 GeV) and,
hence, ofAMS.

At this point, we can check the consistency by performing
10 t . a global fit over the entire window 2.8 Gelu

k <9.5 GeV, with the values of; and of the ratioig taken
from Eq. (24). The result of such a fit is depicted in Fig. 6.
The global estimate ofAMS does not modify the one we
obtained at large energies (5.6 Gey.<9.5 GeV) given
0.0 = : T p in Eq. (21), whereas the globa}?/Npg is 0.79.
n,. [GeV] Finally, we should assess the systematic uncertainty intro-
duced by the assumption of the three-loop asymptoticiy,
' ' ’ 3/3=0) for 5.6 Ge\s u<9.5 GeV. The simplest estimate
30 . of the nonasymptoticity errors consists in monitoring the
> perturbation — . value of AMS, while varying the coefficienty;#0. |y is
I Ry e reasonably bounded bymyy°M/a(u) over the whole win-
B=6.0,62,68 . dow. From the previous workf3,4] and from the present
extrapolatedtoV — oo study we see that the nonasymptoticity has a tendency to
provoke overestimates oA™S (the effective A5j,0p) de-
creases as the matching is performed at higher engrgies
This observation is sufficient to exclude the negative values

of ys. Then, by varying 6 y;<47yyM/a(5.6 GeV)

~42000 we obtain an uncertainty inMS of ~20 MeV.
Thus, the Landau gauge gluon propagator analysis results in

20 b

x>/dof.

(@)

)
9%

Z(w,1/a)/2%1/a)
N

15

. AMS=319+14"10, (26)

(b)

where the upper limit for the systematic uncertainty comes

FIG. 6. Plot(a): the x?/Np for the global fit obtained after the from the dispersion we observed by exploring the domain of
estimation of the four-loop contribution as a function of the |°Werthree-loop good schemearoundMOM, over the (y;,7>)

limit Iftor tr_‘t‘; irr:erfgy wlindow. Plotlt)):dthe ?Iogal_ﬁt Off all(tll:élattli%e plane. It is important to note that the uncertainty in the value
results with the four-loop corrected perturbative formtee soli . . . TOM
P P of AMS would be considerably reduced if the valyg'°™

line curve in Fig. 5 from Eq. (23).
was known. Not only the-20 MeV would be reduced, but

) ] also the dispersion over the set of good schemes to four
somewhat larger than the results obtained by using the ongsops would be fairly restrained.

loop lattice perturbation theofy. Reciprocally, if AMS was known accurately from any

The estimatedy; is not as large as it might look: other source, we could use our data to)ft rather accu-

rately. For example, taking'\"_S strictly equal to the central
value in Eq.(26) would give

vaald vaa®l(4r)3
Y3476 and B4 005 (25

Y2 Yo MOM MOM
Y3 3 Yo

(4m)*  (4m)* Bo

=0.88-0.04, (27

AMS=319 Mev
8For congparisonb, the one-loop pertubrbative k:/alues of the two ra-

tios are Z3(6.0)/Z3(6.8)=0.929 andZ(6.2)/Z5(6.8)=0.947, in .
cleardisaageen)wer?t(wit% the fitted vall{?e’(s1.(%4)]3(evez1 if the small where WeA have used Eq2). But lit us repeat, the fitted
uncertainty in the lattice spacing is considered. On the contrary, th¥alue for y* varies quickly whemAM® is varied within the
fitted ratio Z5(6.2)/25(6.0)=1.017 is in good agreement with the error bars, which explains the large error in E&4) or,
one-loop perturbative prediction 1.019. equivalently,
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ygﬂm gﬂm Yo subtraction (\/I_S) scheme, typically by a factor of 1/0.346

(47T)4+(47)4 ﬂ—0—0.9i0.6. (28 [see Eq.(21)]. The Landau pole in thé1OM scheme is
around 1 GeV. As the perturbative regime of the propagator
is expected to settle in when lgg\vionm) is large enough, it

VI. DISCUSSION is then not too surprising that high perturbative orders are
important around~3 GeV and higher energies are needed
to reach a three-loop perturbative scaling.

The estimate ofAMS is significantly higher than the one
obtained with the Schicnger functional[4], AMS=238
=19 MeV. Zero-flavor nonrelativistic QCONRQCD) re-
sults[18], although not directly expressed in terms/oY",
seem to agree with the result from Scttirmger functional. The main goal of the present work was to go deeper into
Estimates from string tension cover a large range of valueghe study of the asymptoticity of the Landau gauge gluon
244(8) MeV [6], 293(18*22 MeV [19]. On the other propagator. The matching of its nonperturbative evaluation
hand, the value recently obtained directly from the triplefrom lattice with perturbative predictions gives us an esti-
gluon vertex,AMS=295+20 MeV in[1], and the less re- Mate of the strong coupling constant and henca 8° [3].
cent 34@50) MeV [2], along with the one obtained in this ~ We have carefully examined the lattice spacing effects,
paper, favor the larger values aMS The discrepancy is of partlcularly' the hypercyblc .artl'facti and the finite-volume
the order of three sigma. The method based on the ‘Schr@nes- We find a close linearity 'l of the gluon propa-
dinger functional and the one based on Green functions a/@ator, With the slope given by E¢16), which removes effi-
quite different so that a direct comparison is not easy. Coul@'€ntly the hypercubic artifacts. The finite-volume effects, in
it be that the reason for this discrepancy is simply that we did"€ region of large momenta, are parametrized by the relation

not reach a enough large energy? In other words, could it b 8). ) . .
that the difference betweel™—=238+19 MeV and the After having subtracted the lattice artifacts, we found that

result(26) were simply due to the fact that next to third order Lhe four—lopp Cotnt”?lét'?n |strr]1_egllg|ble above;:s Qevt,hbut
terms, which are not used in the fit leading to E26), do ecomes important below this energy, confirming the con-

o S ) ) ) . clusion of Ref[3]. In its turn the four-loop perturbative scal-
mimic a largerAMS? To investigate this question we use a [3] PP

it ing fails below 2.8 GeV: the Landau gauge gluon propagator
simple check: had we assumed the resultf8F° in Ref.[4] regches very slowly the asymptoticit?/. 9eg propag

VII. CONCLUSIONS

to be the right asymptotic one, we would have obtained We therefore have fitted with a three-loop formula over
oM Bm the energy window 5.6 Ge¥u<9.5 GeV. The rather
£ + 3 Yo =8.42+0.08, (29  9ood fit leads td\?gsjoop)Z 319+ 14 MeV. A fitted four-loop

(4m)*  (4m)* Bo formula has been used to extend the fit over the larger energy
window (2.8—-9.5) GeV. We have obtained a consistent de-

over the same energy window used for E@7), scription of all our lattice data.

AMS=238 MeV

(2.8-9.5) GeV, they?/Npe being 0.89. The Schdinger Our final result is

functional result applied to our data would then imply that .

the Landau gauge gluon propagator is not asymptotic at three AMS— 319+ 14+ 108 (6.2 MeV (30
loops at the energy scale of 9 GeV. The four-loop contribu- — 729275 GeV '

tion in this case would be much bigger than the three-loop ) _ o
one(about 4 times This seems rather unlikely. We therefore With the errors discussed in detail in Sec. V. Although a
conclude that the valua ™S obtained by using the Schro comblnatlon. of thgoretlcal regults is always dgllcate, we may
dinger functional technique is difficult to accommodate with Y 10 combine this result with the one obtained from the
the gluon propagator data by using the three-loop expressiofitudy of the three gluon verted], A™>=295+20 MeV.
There may be some unknown systematic effect explaininJh'S results in an overall flavorless estimate from the gluon
this discrepancy. To solve this puzzle one may search fopreen functions: 275 Me¥AMS<343 MeV.

possible nonperturbative effects which have not been taken

under consideration in the present study. A thoroughful and ACKNOWLEDGMENTS

detailed analysis of the implications of power corrections,

which may be sup_posed _for instance to mimick all neglecte(le located in the Center de Ressources Informatiques
terms in p(_arturbanon series, is under Way. Paris-sud, Orsgyand purchased thanks to a funding from

Let us finally make a comment about the_ CONVErgence O \inistee de I'Education Nationale and the CNRS. D.B.
the gluon propagator. The direct connection between thgtcknowledges the Italian INFN, and J.R.Q. the Spanish Fun-
renormalization constant in thHdOM scheme and the gluon dacim Ramm Areces for financial support. Laboratoire de
propagator makes the gluon momentum the natural scale iPhysique Therique is Unife Mixte de Recherche-UMR
this scheme. The scales in thBOM scheme are significantly 8627. Centre de Physique Theorique is Unitixte de Re-
larger than the corresponding ones in the modified minimatherche C7644 du CNRS.

These calculations were performed on the QUADRICS

114508-9



D. BECIREVIC et al. PHYSICAL REVIEW D 61 114508

[1] Ph. Boucaud, J.P. Leroy, J. Micheli, O.rieg and C. Roiesnel, 339 (1995; P. Marenzoni, G. Martinelli, N. Stella, and M.
J. High Energy Physl10, 017 (1998. Testa, Phys. Lett. B18 511(1993.

[2] B. Alles, D. Henty, H. Panagopoulos, C. Parrinello, C. Pittori, [9] D.B. Leinweber, J.I. Skullerud, A.G. Williams, and C. Par-
and D.G. Richards, Nucl. Phy8502 325 (1997; C. Par- rinello, Phys. Rev. 68, 031501(1988; 60, 094507(1999.

rinello et al, Nucl. Phys. B(Proc. Supp). 63, 245(1998; B. [10] H. Nakajima and S. Furui, Nucl. Phys. @roc. Supp). 73,
Alles, D. Henty, H. Panagopoulos, C. Parrinello, and C. Pittori, 635(1999.

Report No. IFUP-TH-23-96, hep-lat/9605033. [11] A. Nakamura and S. Sakai, Suppl. Prog. Theor. Phg4, 585
[3] D. Becirevic, Ph. Boucaud, J.P. Leroy, J. Micheli, On€gJ. (1998.

Rodrguez-Quintero, and C. Roiesnel, Phys. Rev. 6D, [12] A. Cucchieri, Phys. Rev. B0, 034508(1999; A. Cucchieri

094509(1999. and T. Mendes, hep-lat/9902024.

[4] S. Capitani, M. Lscher, R. Sommer, and H. Wittig, Nucl. [13] J.P. Ma, hep-lat/9903009.
Phys.B544, 669 (1999; M. Luscher, inProbing the Standard [14] J.E. Mandula, Phys. Re@15, 273 (1999; P. Weisz, Nucl.
Model of Particle Interactions Proceedings of the Les Phys. B(Proc. Supp). 47, 866 (1996.
Houches Summer School of Theoretical Physics, Les Houche$15] D. Becirevic, P. Boucaud, J.P. Leroy, J. Micheli, O. Pene, J.
1997, edited by R. Gupta, A. Morel, E. deRafael, and F. David Rodriguez-Quintero, and C. Roiesnel, hep-1at/9908056.
(North Holland, Amsterdam, 1999Session LXVIIl, p. 229; [16] G. Grunberg, Phys. Rev. P9, 2315(1984.
M. Luscher, R. Sommer, P. Weisz, and U. Wolf, Nucl. Phys.[17] Ph. Boucaud, J.P. Leroy, J. Micheli, O.rigg and C. Roiesnel,

B413 481 (1994. J. High Energy Physl2, 004 (1998.
[5] D. Becirevicet al,, hep-lat/9809129. [18] C.T.H. Davieset al, Phys. Lett. B345 42 (1995; Phys. Rev.
[6] G.S. Bali and K. Schilling, Phys. Rev. &7, 661(1993. D 56, 2755(1997.
[7] C. Bernard, C. Parrinello, and A. Soni, Phys. Rev4® 1585 [19] G.S. Bali, in “Problems on high energy physics and field
(1994). theory” (147-163, Protvino 1993, hep-lat/9311009.

[8] P. Marenzoni, G. Martinelli, and N. Stella, Nucl. Phy&55, [20] Ph. Boucauckt al. (in progress

114508-10



